Spike timing-dependent serotonergic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit.

نویسندگان

  • Akira Sakurai
  • Paul S Katz
چکیده

Neuromodulation is often thought to have a static, gain-setting function in neural circuits. Here we report a counter example: the neuromodulatory effect of a serotonergic neuron is dependent on the interval between its spikes and those of the neuron being modulated. The serotonergic dorsal swim interneurons (DSIs) are members of the escape swim central pattern generator (CPG) in the mollusk Tritonia diomedea. DSI spike trains heterosynaptically enhanced synaptic potentials evoked by another CPG neuron, ventral swim interneuron B (VSI-B), when VSI-B action potentials occurred within 10 sec of a DSI spike train; however, if VSI-B was stimulated 20-120 sec after DSI, then the amplitude of VSI-B synaptic potentials decreased. Consistent with this, VSI-B-evoked synaptic currents exhibited a temporally biphasic and bidirectional change in amplitude after DSI stimulation. Both the DSI-evoked enhancement and decrement were occluded by serotonin and blocked by the serotonin receptor antagonist methysergide, suggesting that both phases are mediated by serotonin. In most preparations, however, bath-applied serotonin caused only a sustained enhancement of VSI-B synaptic strength. The heterosynaptic modulation interacted with short-term homosynaptic plasticity: DSI-evoked depression was offset by VSI-B homosynaptic facilitation. This caused a complicated temporal pattern of neuromodulation when DSI and VSI-B were stimulated to fire in alternating bursts to mimic the natural motor pattern: DSI strongly enhanced summated VSI-B synaptic potentials and suppressed single synaptic potentials after the cessation of the artificial motor pattern. Thus, spike timing-dependent serotonergic neuromodulatory actions can impart temporal information that may be relevant to the operation of the CPG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

State-, timing-, and pattern-dependent neuromodulation of synaptic strength by a serotonergic interneuron.

Here we report that a serotonergic neuron evokes two distinct neuromodulatory actions with different state, timing, and firing pattern dependencies. These neuromodulatory actions may have important behavioral functions. In the mollusc, Tritonia diomedea, EPSCs evoked by ventral swim interneuron B (VSI) exhibited intrinsic plasticity; after a spike train, EPSC amplitude increased from a basal st...

متن کامل

Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior.

Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most like...

متن کامل

Serotonergic enhancement of a 4-AP-sensitive current mediates the synaptic depression phase of spike timing-dependent neuromodulation.

The mechanism underlying spike timing-dependent neuromodulation (STDN) was investigated in the opisthobranch mollusc Tritonia diomedea. The serotonergic dorsal swim interneurons (DSIs) dynamically modulated the synaptic output of ventral swim interneuron B (VSI); immediately after DSI stimulation, there was a potentiation of VSI synaptic strength followed by a longer-lasting synaptic depression...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 34  شماره 

صفحات  -

تاریخ انتشار 2003